جبر های تابعی باناخ و نگاشت های حافظ نرم چند جمله ای خاص

thesis
abstract

در این پایان نامه به بیان برخی مفاهیم مانند جبر، جبر باناخ و تعاریفی چون طیف ، شعاع طیفی ، جبر تابعی باناخ ، مرز سیلو ، مرز چاکوئت ، یرد و طیف پیرامونی می پردازیم. هدف این پایان نامه بررسی توان هایی از نگاشت های پوشای t ,t^:a ?b است که به ازای هر f ,g ?a در رابطه ?f^s g^t- ?? = ??(tf)?^s ?(t^ g)?^t- ?? صدق می کنند. نتیجه ای مشابه نیز در حالتی که t=t^ بین زیر مجموعه های خاص a , b تعریف می شود به دست می آوریم .

First 15 pages

Signup for downloading 15 first pages

Already have an account?login

similar resources

تعیین ساختار نگاشت های حافظ ویژگی های خاص روی جبر عملگرها

. در فصل اول، تعاریف، مفاهیم و قضایای مقدماتی را بیان می کنیم. فصل دوم، شامل چهار بخش می باشد. در بخش اول، نگاشت های خطی حافظ خودتوانی عملگرها، در بخش دوم، نگاشت های خطی حافظ خودتوانی ضرب جردن عملگرها، در بخش سوم، نگاشت هایی که توأماً حافظ خودتوانی ضرب جردن و صفر بودن ضرب جردن عملگرها هستند و سرانجام در بخش چهارم، نگاشت هایی که خودتوانی جمع و تفاضل عملگرها را حفظ می کنند را مورد بررسی قرار می ده...

15 صفحه اول

نگاشت های جدا کننده در جبر باناخ

در این پژوهش ما به معرفی خواص نگاشت های حافظ مجزایی روی جبر های باناخ پرداخته ایم و شرایطپیوستگی خود کار فرم کلیو شرایط حافظ مجزاییدو طرفه شدن این نگاشتها را ببررسی کرده ایم

15 صفحه اول

بررسی برخی فضاهای باناخ تحت نرم های سه جمله ای

در‎‎‎‎‎‎ چند ساله ی اخیر بررسی نقاط فرین گوی یکه ی برخی فضاها و به خصوص فضاهای چندجمله ای ها مورد توجه قرار گرفته است. اهمیت این بررسی ها در این حقیقت نهفته است که تابع محدب (مانند نرم چندجمله ای) تعریف شده روی یک مجموعه ی بسته‏، کراندار و محدب‏، ماکسیمم خود را روی نقاط فرین آن مجموعه اختیار می کند. این روش به رویکرد کراین-میلمن معروف است. مشخص سازی نقاط فرین به خصوص در فضای چندجمله ای ها یک...

کاهش مرتبه‌ی سیستم با استفاده از چند جمله ای های لاگر و الگوریتم جستجوی هارمونی

این مقاله، به ارائه‌ی رهیافتی جهت کاهش مرتبه‌ی سیستم ها ، مبتنی بر چند جمله‌ای متعامد لاگر و الگوریتم جستجوی هارمونی می پردازد. به همین منظور، ساختار ثابت مناسبی برای مدل مرتبه کاهشی در نظر گرفته می شود. سپس با استفاده از الگوریتم جستجوی هارمونی با کمینه کردن یک تابع برازش، پارامتر های مدل مرتبه کاهشی به طور همزمان تعیین می شوند که تابع برازش، اختلاف میان l ضریب اول بسط لاگر مدل مرتبه کامل و l ...

full text

نگاشت های حافظ طیف روی جبر ماتریس ها

مساله ی حفظ یک ویژگی خاص در اغلب قسمت های ریاضی دیده می شود در واقع یکی از مهمترین زمینه های تحقیقاتی در نظریه عملگرها بشمار می رود. نگاشت های نگه دارنده اولین بار توسط فر بنیوس مورد بررسی قرار گفت، او ثابت کرد که نگاشت خطی و حافظ دترمینان روی فضای ماتریس ها به فرم استاندارد است. در ادامه ی کار او مارکوس و مویلز ثابت کردند که اگر نگاشت خطی و حافظ طیف باشد به همین فرم است. باشد که در شرط n×n ...

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


document type: thesis

دانشگاه تربیت معلم - سبزوار - دانشکده ریاضی و کامپیوتر

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023